Skip to main content

Advertisement

Log in

The Altitude of Alpine Treeline: A Bellwether of Climate Change Effects

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Because of the characteristically low temperatures and ambient CO2 concentrations associated with greater altitudes, mountain forests may be particularly sensitive to global warming and increased atmospheric CO2. Moreover, the upper treeline is probably the most stressful location within these forests, possibly providing an early bellwether of forest response. Most treeline studies of the past century, as well as recently, have correlated temperatures with the altitudinal limits observed for treelines. In contrast, investigations on pre-establishment seedlings, the most vulnerable life stage of most tree species, are rare. There appears to be specific microclimatic factors dictated by wind and sky exposure that limit seedling survival, and also generate the distorted tree forms commonly observed at treeline. Seedling survival appears critical for creating the biological facilitation of microclimate at the community level which is necessary for the growth of seedlings to normal tree stature, forming new subalpine forest at a higher altitude.

Abstract

Es posible que—a causa de características que están asociadas con altitudes más altas: las bajas temperaturas y las concentraciones ambientales de dióxido de carbono—los bosques en las montañas están extra sensibles al calentamiento global y el aumento de dióxido de carbono en la atmósfera. El borde superior del bosque es probablemente el lugar con la más estrés y proviene uno de los primeros avisos de cómo reaccionará el bosque entero. En el pasado y hoy en día, la mayoría de los estudios del borde del bosque ha conectado la temperatura con los límites de la altitud. En contraste, investigaciones de árboles infantiles son raras, y la infancia de los árboles es el período de vida más vulnerable. Aparece que hay factores micro-climáticos dictados por la exposición del viento y cielo que limitan la sobrevivencia de los árboles infantiles, y que generan árboles deformados observados al borde del bosque. Es más, la sobrevivencia de árboles infantiles es crítica para crear la facilitación biológica del micro-clima en una comunidad arbolada. Esta facilitación es necesaria para el crecimiento de árboles infantiles a árboles maduros, los que forman un nuevo bosque subalpino en una altitud más alta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  • Ainsworth, E. A. & S. P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment? A meta-analytic review of the responses of photosynthesis, canopy properties, and plant production to rising CO2. New Phytologist 165: 351–372.

    Article  PubMed  Google Scholar 

  • ——— & A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258–270.

    Article  CAS  Google Scholar 

  • Alvarez-Uria, P. & C. Körner. 2007. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Functional Ecology 21: 211–218.

    Article  Google Scholar 

  • Andrews, T. & P. M. Foster. 2008. CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophysical Letters 35: L04802. doi:10.1029/2007GL032273.

    Article  CAS  Google Scholar 

  • Arno, S. F. 1984. Timberline, mountain and arctic frontiers. The Mountaineers, Seattle.

    Google Scholar 

  • Bader, M. Y., I. van Geloof & M. Rietkerk. 2007. High solar radiation hinders tree establishment above the alpine treeline in northern Ecuador. Plant Ecology 191: 33–45.

    Article  Google Scholar 

  • Ball, M. C., V. S. Hodges & G. P. Laughlin. 1991. Cold-induced photoinhibition limits regeneration of snow gum at tree line. Functional Ecology 5: 663–668.

    Article  Google Scholar 

  • Bekker, M. F. 2005. Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arctic, Antarctic, and Alpine Research 37: 97–107.

    Article  Google Scholar 

  • ———, G. P. Malanson, K. J. Alftine & D. M. Cairns. 2001. Feedback and pattern in computer simulations of the alpine treeline ecotone. Pages 71-82 in A. C. Millington, S. J. Walsh, & P. E. Osborne (eds.), GIS and remote sensing applications in biogeography and ecology. Kluwer Academic, Boston.

    Google Scholar 

  • Boerner, R. E. J. & J. A. Brinkman. 1996. Ten years of tree seedling establishment and mortality in an Ohio deciduous forest complex. Bulletin of the Torrey Botanical Club 123: 309–317.

    Article  Google Scholar 

  • Bridle, J. R. & T. H. Vines. 2006. Limits to evolution at range margins: when and why does adaptation fail. Trends in Ecology and Evolution 22: 140–147.

    Article  PubMed  Google Scholar 

  • Brodersen, C. R., M. J. Germino & W. K. Smith. 2006. Photosynthesis during an episodic drought in Abies lasiocarpa and Picea engelmannii across an alpine tree line. Artic, Antarctic and Alpine Research 38: 34–41.

    Article  Google Scholar 

  • Brooker, R. W., F. T. Maestre, R. M. Callaway, C. Lortie, L. A. Cavieres, G. Kunstler, P. Liancourt, K. Tielbörger, J. M. L. Travis, F. Anthelme F. C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C. L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard & R. Michalet. 2008. Facilitation in plant communities: The past, the present, and the future. Journal of Ecology 96: 18–34.

    Article  Google Scholar 

  • Büntgen, U., D. C. Frank, M. Schmidhalter, T. Burkhard, B. Neuwirth, M. Seifert & J. Esper. 2006. Growth/climate response shift in a long subalpine spruce chronology. Trees 20: 99–110.

    Article  Google Scholar 

  • Butler, D. R., G. P. Malanson & L. M. Resler. 2004. Turf-banked terrace treads and risers, turf exfoliation, and possible relationships with advancing tree line. Catena 58: 259–274.

    Article  Google Scholar 

  • Cairns, D. M. 2005. Simulating carbon balance at tree line for krummholz and dwarf tree growth forms. Ecological Modeling 187: 314–328.

    Article  Google Scholar 

  • ——— & J. Moen. 2004. Herbivory influences tree lines. Journal of Ecology 92: 1019–1024.

    Article  Google Scholar 

  • Chapman, S. K., J. A. Langley, S. C. Hart & G. W. Koch. 2006. Plants actively control nitrogen cycling: Uncorking the microbial bottleneck. New Phytologist 169: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Choler, P., R. Michalet & R. M. Callaway. 2001. Facilitation and competition along gradients in alpine plant communities. Ecology 82: 3295–3308.

    Google Scholar 

  • Cui, M. & W. K. Smith. 1990. Photosynthesis and water relations of young seedlings of Abies lasiocarpa with high natural mortality. Tree Physiology 8: 37–46.

    Google Scholar 

  • ——— & ———. 1991. Seedling microenvironment, gas exchange and survival during first-year establishment in subalpine conifers. Tree Physiology 10: 44–53.

    Google Scholar 

  • Dale, V. H., L. A. Joyce, S. McNulty, R. P. Neilson, M. P. Ayres, M. D. Flannigan, P. J. Hanson, L. C. Irland, A. E. Lugo, C. J. Peterson, D. Simberloff, F. J. Swanson, B. J. Stocks & B. M. Wotton. 2001. Climate change and forest disturbance. Bioscience 51: 723–734.

    Article  Google Scholar 

  • De Graaff, M. A., K. J. van Groenigen, J. Six, B. Hungate & C. van Kessel. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology 12: 2077–2091.

    Article  Google Scholar 

  • DeLucia, E. H., D. J. Moore & R. J. Norby. 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle. Global Biogeochemical Cycles 19: GB3006.

    Article  CAS  Google Scholar 

  • ———, C. L. Casteel, P. D. Nabity & B. F. O’Neil. 2008. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proceedings of the National Academy of Science 105: 1781–1782.

    Article  CAS  Google Scholar 

  • Di Pasquale, G., M. Marziano, S. Impagliazzo, C. Lubritto, A. De Natale & M. Y. Bader. 2008. The Holocene tree line in the northern Andes (Ecuador): First evidence from soil charcoal. Paleogeography, Paleoclimatology, Paleoecology 259: 17–34.

    Article  Google Scholar 

  • Egerton, J. J. G., J. G. C. Banks, A. Gibson, R. B. Cunningham & M. C. Ball. 2000. Facilitation of seedling establishment: reduction in irradiance enhances winter growth of Eucalyptus pauciflora. Ecology 81: 1437–1446.

    Google Scholar 

  • Finzi, A. C., D. J. P. Moore, E. H. DeLucia, J. Lichter, K. S. Hofmockel, R. B. Jackson, H. S. Kim, R. Matamala, H. R. McCarthy, R. Oren, J. S. Pippen & W. H. Schlesinger. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87: 15–25.

    Article  PubMed  Google Scholar 

  • Friend, A. D. & F. I. Woodward. 1990. Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research 20: 59–124.

    Article  Google Scholar 

  • Gale, J. 1972a. The availability of carbon dioxide for photosynthesis at high altitudes: Theoretical considerations. Ecology 53: 494–497.

    Article  Google Scholar 

  • ———. 1972b. Elevation and transpiration. Some theoretical considerations, with special reference to Mediterranean type climates. Journal of Applied Ecology 9: 691–702.

    Article  Google Scholar 

  • ———. 1973. Experimental evidence for the effect of barometric pressure on photosynthesis and transpiration. Ecology and Conservation (UNESCO) 5: 289–293.

    Google Scholar 

  • ———. 2004. Plants and altitude—revisited. Annals of Botany 94: 199–200.

    Article  PubMed  CAS  Google Scholar 

  • Geber, M. A. 2008. To the edge: Studies of species range limits. New Phytologist 178: 228–230.

    Article  PubMed  Google Scholar 

  • Geiger, T. & C. Leuschner. 2004. Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199: 100–109.

    Google Scholar 

  • Germino, M. J. & W. K. Smith. 1999. Sky exposure, crown architecture, and low temperature photoinhibition in conifer seedlings at alpine tree line. Plant, Cell & Environment 22: 407–415.

    Article  Google Scholar 

  • ——— & ———. 2001. Interactions of microsite, plant form, and low-temperature photoinhibition in alpine plants. Artic, Antarctic, and Alpine Research 32: 388–396.

    Article  Google Scholar 

  • ———, C. A. C. Resor & W. K. Smith. 2002. Influence of microsite and plant form on photosynthetic responses to frost and high sunlight. Plant Ecology 162: 157–168.

    Article  Google Scholar 

  • ———, N. J. Hasselquist, T. M. McGonigle, W. K. Smith & P. Sheridan. 2006. Colonization of conifer seedling roots by fungal mycelium in an alpine-tree line ecotone: Relationships to microsite, developmental stage, and ecophysiology of seedlings. Canadian Journal of Forest Research 36: 901–909.

    Article  Google Scholar 

  • Gimenez-Benavides, L., A. Escudero & J. M. Iriondo. 2007. Local adaptation enhances seedling recruitment along an altitudinal gradient in a high-mountain Mediterranean plant. Annals of Botany 99: 723–734.

    Article  PubMed  Google Scholar 

  • Giorgi, F. 2001. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophysical Research Letters 28: 3317–3326.

    Article  Google Scholar 

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez & W. M. Gray. 2001. The recent increase in Atlantic hurricane activity: causes and implications. Science 293: 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Gosz, P. G. 1993. Ecological hierarchies. Ecological Applications 3: 369–376.

    Article  Google Scholar 

  • Grace, J., F. Berninger & L. Nagy. 2002. Impacts of climate change on the tree line. Annals of Botany 90: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Grabherr, G., M. Gottfried & H. Pauli. 1994. Climate effects on Mountain plants. Nature 369: 448.

    Article  Google Scholar 

  • Graumlich, L. J. 1991. Subalpine tree growth, climate, and increasing C02: an assessment of recent growth trends. Ecology 72: 1–11.

    Article  Google Scholar 

  • ———, & L. B. Brubaker. 1986. Reconstruction of annual temperature (1590–1979) for Longmire, Washington, derived from tree rings. Quaternary Research 25: 223–234.

    Article  Google Scholar 

  • Gregory, J. & M. Webb. 2008. Tropospheric adjustment induces a cloud component in CO2 forcing. Journal of Climate 21: 58–63.

    Article  Google Scholar 

  • Gutschick, V. P. & H. BassririRad. 2003. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist 160: 21–42.

    Article  Google Scholar 

  • Hadley, J. L. & W. K. Smith. 1987. Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73: 82–90.

    Article  Google Scholar 

  • Handa, I. T., F. Hagedorn & S. Hättenschwiler. 2008. No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Functional Ecology 22: 348–358.

    Article  Google Scholar 

  • Harcombe, P. A. 1987. Tree life tables. Bioscience 37: 557–568.

    Article  Google Scholar 

  • Hasselquist, N. J., M. J. Germino, T. McGonigle & W. K. Smith. 2005. Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine tree line. New Phytologist 165: 867–873.

    Article  PubMed  Google Scholar 

  • Hättenschwiler, S. & W. K. Smith. 1999. Natural seedling occurrence in treeline conifers: a case study from the central Rocky Mountains, USA. Acta Oecologia 20: 219–224.

    Article  Google Scholar 

  • ———, T. Handa, L. Egli, R. Asshoff, W. Amman & C. Körner. 2002. Atmospheric CO2 enrichment of alpine tree line conifers. New Phytologist 156: 363–375.

    Article  Google Scholar 

  • Hayden, B. P. & N. R. Hayden. 2003. Decadal and century-long storminess changes at long term ecological research sites. Pages 262–285 in D. Greenland, D. G. Goodin, R. C. Smith (eds.), Climate variability and ecosystem climate variability and response at long-term ecological research sites. Oxford University Press, New York.

    Google Scholar 

  • Hoch, G., M. Popp & C. Körner. 2002. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss tree line. Oikos 98: 361–374.

    Article  CAS  Google Scholar 

  • Holtmeier, F. K. 2003. Mountain timberlines: ecology, patchiness, and dynamics. Advances in Global Change Research 14 Dordrecht, Boston.

    Google Scholar 

  • ——— & G. Broll. 2005. Sensitivity and response of the northern hemisphere altitudinal and polar tree lines to environmental change at landscape and local scales. Global Ecology and Biogeography 14: 395–410.

    Article  Google Scholar 

  • ——— & ———. 2007. Tree line advance—driving processes and adverse factors. Landscape Online 1: 1–33. doi:10.3097/LO.200701.

    Article  Google Scholar 

  • Hyvönen, R., G. Ãgren, S. Linder, T. Persson, M. F. Cotrufo, A. Ekblad, M. Freeman, A. Grelle, I. A. Janssens, P. G. Jarvis, S. Kellomaki, A. Lindroth, D. Loustau, T. Lundmark, R. J. Norby, R. Oren, K. Pliegaard, M. G. Ryan, B. D. Sigurdsson, G. Strömgren, M. van Oijen & G. Wallin. 2007. The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytologist 173: 463–480.

    Article  PubMed  CAS  Google Scholar 

  • IPCC Climate Change. 2007. Impacts, adaptation, and vulnerability. Contribution of working Group II, 4th Assessment Report of the International Panel on Climate Change (IPCC). (www.ipcc.ch/ipccreports/ar4-wg2,htm)

  • Johnson, D. M. & W. K. Smith. 2007a. Limitations to photosynthetic carbon gain in timberline Abies lasiocarpa seedlings during prolonged drought. Canadian Journal of Forest Research 37: 568–597.

    Article  CAS  Google Scholar 

  • ——— & ———. 2007b. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA. Tree Physiology 28: 385–392.

    Google Scholar 

  • ———, M. J. Germino & W. K. Smith. 2004. Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology 24: 377–386.

    PubMed  Google Scholar 

  • Jordan, D. N. & W. K. Smith. 1995. Microclimate factors influencing the frequency and duration of growth season frost in subalpine plants. Agricultural and Forest Meteorology 77: 17–30.

    Article  Google Scholar 

  • Juntunen, V. & S. Neuvonen. 2006. Natural regeneration of Scots pine and Norway spruce close to the timberline in northern Finland. Silva Fennica 40: 443–458.

    Google Scholar 

  • ———, ———, Y. Norokopi & T. Tasanen. 2002. Potential for timberline advance in northern Finland, as revealed by monitoring during 1983-99. Artic 55: 348–361.

    Google Scholar 

  • Körner, C. 1998. A reassessment of high elevation tree line positions and their explanation. Oecologia 115: 445–459.

    Article  Google Scholar 

  • ———. 2003a. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd ed. Springer, Berlin, 77-99

    Google Scholar 

  • ———. 2003b. Carbon limitation in trees. Journal of Ecology 91: 4–7.

    Article  Google Scholar 

  • ———. 2005. The green cover of mountains in a changing environment. In: U. M Hubter, H. K. M. Bugmann, M. E. Reasoner eds. Global change and mountain regions: An overview of current knowledge. 367–375. Advances in Global Change Research 23, Dordrecht.

    Chapter  Google Scholar 

  • ———. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393–411.

    Article  PubMed  CAS  Google Scholar 

  • ———. 2007. Climatic tree lines: Conventions, global patterns, causes. Erdkunde 61: 316–324.

    Article  Google Scholar 

  • ——— & J. Paulsen. 2004. A world-wide study of high-altitude tree line temperatures. Journal of Biogeography 31: 713–732.

    Google Scholar 

  • Kullman, L. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: Implications for climate change ecology. Journal of Ecology 95: 41–52.

    Article  Google Scholar 

  • Kytöviita, A-M. & A. L. Ruotsalainen. 2007. Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. American Journal of Botany 94: 1309–1315.

    Article  Google Scholar 

  • Lambers, H. & H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23: 188–242.

    Article  Google Scholar 

  • League, K. & T. Veblen. 2006. Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. Forest Ecology and Management 228: 98–107.

    Article  Google Scholar 

  • Leuschner, C. 2000. Are high elevations in tropical mountains arid environments for plants? Ecology 81: 1425–1436.

    Google Scholar 

  • Leuzinger, S. & C. Körner. 2007. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology 146: 29–37.

    Article  Google Scholar 

  • Li, M., W. Xiao, S. Wang, G. Cheng, P. Cherubini, X. Cai, L. Liu, X. Wang & W. Zhu. 2008. Mobile carbohydrates in Himalayan tree line trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology 28: 1287–1296.

    PubMed  CAS  Google Scholar 

  • Loveys, B. R., I. Scheurwater, T. L. Pons, A. H. Fitter & O. K. Atkin. 2002. Growth temperature influences the underlying components of relative growth rate: An investigation using inherently fast- and slow-growing plant species. Plant, Cell & Environment 25: 975–988.

    Article  Google Scholar 

  • Maher, E. L. & M. J. Germino. 2006. Microsite differentiation among conifer species during seedling establishment at alpine tree line. Ecoscience 13: 334–341.

    Article  Google Scholar 

  • Malanson, G. P. 1997. Effects of feedback and seed rain on ecotone patterns. Landscape Ecology 12: 27–38.

    Article  Google Scholar 

  • ———. 2001. Complex responses to global change at alpine treeline. Physical Geography 22: 333–342.

    Google Scholar 

  • ———, D. R. Butler, D. B. Fagre, S. J. Walsh, D. F. Tomback, L. D. Daniels, L. M. Resler, W. K. Smith, D. L. Weis, D. L. Peterson, A. G. Bunn, C. H. Hiemstra, D. Liptzin, P. S. Bourgeron, Z. Shen & C. I. Miller. 2007. Physical Geography 28: 378–396.

  • Maurol, C., H. S. J. Lee & P. G. Jarvis. 1999. Increased growth in elevated CO2: An early, short-term response? Global Change Biology 5: 623–633.

    Article  Google Scholar 

  • Mayr, S., A. Gruber & H. Bauer. 2003. Repeated freeze–thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217: 436–441.

    Article  PubMed  CAS  Google Scholar 

  • ———, ——— & ———. 2007. Limits in water relations. Pages 145–162 in G. Wieser, M. Tuasz (eds.), Trees at their upper limit: tree life limitations at the alpine tree line. Plant Ecophysiology 5, Springer, Dordrecht.

    Google Scholar 

  • McNulty, S. G. & J. D. Aber. 2001. US national climate change assessment on forest ecosystems: An introduction. Bioscience 51: 720–722.

    Article  Google Scholar 

  • Millard, P., M. Sommerkorn & G. Quen-Aëlle. 2007. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytologist 175: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Michalet, R. 2006. Is facilitation in arid environments the result of direct or complex interactions? New Phytologist 169: 3–6.

    Article  PubMed  Google Scholar 

  • Mori, A. S., E. Mizumachi & D. G. Sprugel. 2008. Morphological acclimation to understory environments in Abies amabilis, a shade- and snow-tolerant conifer species of the Cascade Mountains, Washington, USA. Tree Physiology 28: 815–824

    PubMed  Google Scholar 

  • Nicolussi, K., S. Bortenschlager & C. Körner 1995. Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9: 181–189.

    Article  Google Scholar 

  • Niklas, K. J. 2007. Maximum plant height and the biophysical factors that limit it. Tree Physiology 27: 433–440.

    PubMed  Google Scholar 

  • ——— & H-C. Spatz. 2006. Allometric theory and the mechanical stability of large trees: Proof and conjecture. American Journal of Botany 93: 824–828.

    Article  Google Scholar 

  • Noble, I. R. 1993. A model of response of ecotones to climate change. Ecological Applications 3: 396–403.

    Article  Google Scholar 

  • Osmond, C. B. 2007. Crassulacean acid metabolism: now and then. Progress in Botany 68: 3–32.

    Article  CAS  Google Scholar 

  • Palacio, S., M. Maestroa & G. Montserrat-Martí. 2005. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environmental and Experimental Botany 59: 34–42.

    Article  CAS  Google Scholar 

  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.

    Article  Google Scholar 

  • Paulsen, J., U. M. Weber & C. Körner. 2000. Tree growth near tree line: Abrupt or gradual reduction with altitude? Artic, Antarctic, and Alpine Research 32: 14–20.

    Article  Google Scholar 

  • Rathgeber, C., J. Guiot & J. J. Eduard. 2000. Utilisation d’un modèl biogéochimique en dendroécologie. Application au pin Cembro. Comminications de Recherche, Academie des Sciences Paris 323: 489–497.

    CAS  Google Scholar 

  • Raven, J. A. 2002. Selection pressures on stomatal evolution. New Phytologist 153: 371–386.

    Article  CAS  Google Scholar 

  • Reinhardt, K. & W. K. Smith. 2007. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA. Tree Physiology 28: 113–122.

    Google Scholar 

  • Risser, P. G. 1995. The status of the science of examining ecotones. Bioscience 45: 318–325.

    Article  Google Scholar 

  • Sarmiento, F. O. & L. M. Frolich. 2002. Andean cloud forest tree lines: Naturalness, agriculture and the human dimension. Mountain Research and Development 22: 278–287.

    Article  Google Scholar 

  • Seppä, H., M. Nyman, A. Korhola & J. Weckström. 2002. Changes of tree lines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. Journal of Quaternary Science 17: 287–301.

    Article  Google Scholar 

  • Sharkey, T. D., I. Terashima, A. Standish & S. E. Weise. 2004. CO2 processing from the chloroplast to the leaf. Pages 171–206 in W. K. Smith, T. C. Vogelmann, C. Critchley, (eds.), Photosynthetic adaptation from the chloroplast to the landscape. Ecological studies 178. Springer, New York.

    Google Scholar 

  • Shi, P., C. Körner & G. Hoch. 2006. End-of-season carbon supply status of woody species near the tree line in western China. Basic and Applied Ecology 7: 370–377.

    Article  CAS  Google Scholar 

  • ———, ——— & ———. 2008. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Functional Ecology 22: 213–220.

    Article  Google Scholar 

  • Shugart, H. H., N. H. F. French, E. S. Kasischke, J. J. Slawski, C. W. Dull, R. A. Shuchman & J. Mwangi. 2001. Detection of vegetation change using reconnaissance imagery. Global Change Biology 7: 247–252.

    Article  Google Scholar 

  • Slatyer, R. O. & I. R. Noble. 1992. Dynamics of montane treelines. Pages 360–378 in A. Hansen, D. Di Castri (eds.), Landscape boundaries: consequences for biotic diversity and ecological flows. Ecological Studies 92. Springer, New York.

    Google Scholar 

  • Smith, W. K. & C. A. Brewer. 1994. The adaptive importance of shoot and crown architecture in conifer trees. American Naturalist 143: 528–532.

    Article  Google Scholar 

  • ——— & G. A. Carter. 1988. Shoot structural effects of needle temperature and photosynthesis in conifers. American Journal of Botany 75: 496–500.

    Article  Google Scholar 

  • ——— & R. A. Donahue. 1991. Simulated influence of altitude on photosynthetic CO2 uptake potential in plants. Plant, Cell & Environment 14: 133–136.

    Article  Google Scholar 

  • ——— & G. N. Geller. 1981. Leaf and environmental parameters influencing transpiration: Theory and field measurements. Oecologia 46: 308–314.

    Google Scholar 

  • ——— & N. M. Hughes. 2008. Progress in understanding plant form and photosynthetic function. Castanea, in press.

  • ——— & D. M. Johnson. 2008. Biophysical effects of altitude on plant gas exchange. In: Biophysical Plant Ecology: Perspectives and Trends. University of California Press, Los Angeles.

    Google Scholar 

  • ——— & A. K. Knapp. 1990. Ecophysiology of high elevation forests. Pages 87–142 in C. B. Osmond, L. Pitelka (eds.), Plant biology of the Great Basin and range. Springer, London.

    Google Scholar 

  • ———, M. J. Germino, T. E. Hancock & D. M. Johnson. 2003. Another perspective on the altitudinal occurrence of alpine tree lines. Tree Physiology 23: 1101–1113.

    PubMed  Google Scholar 

  • ———, P. S. Nobel, W. E. Reiners, T. C. Vogelmann & C. Chritchley. 2004. Summary and future perspectives. Pages 3-14in W. K. Smith, T. C. Vogelmann, C. Critchley (eds.), Photosynthetic adaptation from the chloroplast to the landscape. Ecological Studies 178. Springer, New York.

    Google Scholar 

  • ———, D. M. Johnson & K. A. Reinhardt. 2008. Ecosystems: Alpine forest. in S. E. Jorgensen (ed.), Encyclopedia of ecology. Elsevier, Oxford.

    Google Scholar 

  • Sperry, J. S. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology 104: 13–23.

    Article  Google Scholar 

  • Springer, C. J. & J. K. Ward. 2007. Flowering time and elevated atmospheric CO2. New Phytologist 76: 243–255.

    Article  CAS  Google Scholar 

  • Stanhill, G. & S. Cohen. 2001. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology 107: 255–278.

    Article  Google Scholar 

  • Stockton, C. W. 1984. An alternative hypothesis to direct CO2 fertilization as a cause of increased tree growth during 1850–1980 in central Nevada. Preliminary report, Laboratory of Tree Ring Research. University of Arizona, Tucson, 1–26.

    Google Scholar 

  • Susiluoto, S., M. Perämäkia, E. Nikinmaaa & F. Berninger. 2007. Effects of sink removal on transpiration at the tree line: Implications for the growth limitation hypothesis. Environmental & Experimental Botany 60: 334–339.

    Article  Google Scholar 

  • Sveinbjörnsson, B. 2000. North American and European tree lines: external forces and internal processes controlling position. Ambio 29: 388–395.

    Google Scholar 

  • Terashima, I., T. Masuzawa, H. Ohba & Y. Yokoi. 1995. Is photosynthesis suppressed at higher elevation due to low CO2 pressure? Ecology 76: 2663–2668.

    Article  Google Scholar 

  • Tranquillini, W. 1979. Physiological ecology of the alpine timberline. Ecological Studies 31. Springer, New York. 137 pp.

    Google Scholar 

  • Troll, C. 1973. The upper timberlines in different climatic zones. Arctic and Alpine Research 5: 3–18.

    Google Scholar 

  • Walsh, S., G. P. Malanson & D. R. Butler. 1992. Alpine treeline in Glacier National Park, Montana. Pages 167–171 in D. Janelle (ed.), Geographical snapshots of North America. Commemorating the 24th Congress of the International Geographical Union and Assembly. Guilford, New York.

    Google Scholar 

  • Wang, T., Q. Zhang & K. Ma. 2006. Tree line dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Global Ecology and Biogeography 15: 406–415.

    Article  Google Scholar 

  • Ward, J. K., J. Antonovics, R. B. Thomas & B. R. Strain. 2000. Is atmospheric CO2 a selective agent on model C3 annuals. Oecologia 123: 330–341.

    Article  Google Scholar 

  • Wardle, P. 1974. Alpine timberlines. Pages 371–402 in J. D. Ives, R. G. Barry (eds.), Arctic and alpine environments. Methuen, London.

    Google Scholar 

  • Webster, P., J. Holland, G. J. Curry & H. R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844–1846.

    Article  PubMed  CAS  Google Scholar 

  • Weiser, G. 2007a. Current concepts for treelife limitations at the upper treeline. Pages 1–18 in G. Wieser, M. Tuasz (eds.), Trees at their upper limit: Tree life limitations at the alpine tree line. Plant Ecophysiology 5. Springer, Dordrecht.

    Google Scholar 

  • ———. 2007b. Global change at the upper timberline. Pages 197–209 in G. Wieser, M. Tuasz (eds.), Trees at their upper limit: Tree life limitations at the alpine tree line. Plant Ecophysiology 5, Springer, Dordrecht.

    Google Scholar 

  • ——— & M. Tuasz. 2007. Synopsis. Pages 219–223 in G. Wieser, M. Tuasz (eds.), Trees at their upper limit: Tree life limitations at the alpine tree line. Plant Ecophysiology 5. Springer, Dordrecht.

    Google Scholar 

  • Wiegand, T., J. L. Camarero, N. Rüger & E. Gutiérrez. 2006. Abrupt population changes in tree line ecotones along smooth gradients. Journal of Ecology 94: 880–889.

    Article  Google Scholar 

  • Williams, P. J. B. 1998. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394: 55–57.

    Article  CAS  Google Scholar 

  • Williams, J. W. & S. T. Jackson. 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5: 475–482.

    Article  Google Scholar 

  • Wolf, A., T. V. Callaghan & K. Larson. 2008. Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change. doi.10.1007/s1058-007-9342-4.

    Google Scholar 

  • Wullschleger, S. D., T. I. Tschaplinski & R. J. Norby. 2002. Plant water relations at elevated CO2—implications for water-limited environments. Plant, Cell & Environment 25: 319–331.

    Article  Google Scholar 

  • Zak, D. R., K. S. Pregitzer, J. S. King & W. E. Holmes. 2000. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147: 201–222.

    Article  CAS  Google Scholar 

  • Zens, M. S. & D. R. Peart. 2003. Dealing with death data: individual hazards, mortality and bias. Trends in Ecology and Evolution 18: 366–373.

    Article  Google Scholar 

  • Zvereva, E. L. & M. V. Kozlov. 2004. Facilitative effects of top-canopy plants on four dwarf shrub species in habitats severely disturbed by pollution. Journal of Ecology 92: 288–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation for financial support to WKS and MJG; the USDA Forest Service for field work assistance in the Medicine Bow Mountains of southeast Wyoming, USA, and Dr. Maia Akhalkatsi and Otar Abdaladze of the Georgia Institute of Botany, Kazbegi Research Station, Kazbegi, Georgia (FSU) for field assistance in the Caucasus Mountains, Republic of Georgia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, W.K., Germino, M.J., Johnson, D.M. et al. The Altitude of Alpine Treeline: A Bellwether of Climate Change Effects. Bot. Rev. 75, 163–190 (2009). https://doi.org/10.1007/s12229-009-9030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-009-9030-3

Keywords

Navigation